\square

Misc. Information

$$
\begin{aligned}
& 1 \mathrm{~kg}=2.2 \mathrm{lbs} \\
& 1 \mathrm{inch}=2.54 \mathrm{~cm} \\
& 1 \text { mile }=1.609 \mathrm{~km}=1609 \mathrm{~m} \\
& 1 \text { horsepower }=746 \text { Watts }
\end{aligned}
$$

acceleration due to gravity on earth's surface: $-9.8 \mathrm{~m} / \mathrm{s}^{2}$

DO NOT LOSE THIS! DO NOT WRITE ON THIS!
mass of the earth : $5.98 \times 10^{24} \mathrm{~kg}$ radius of the earth: $6.37 \times 10^{6} \mathrm{~m}$ mass of the moon: $7.35 \times 10^{22} \mathrm{~kg}$
radius of the moon: $1.738 \times 10^{6} \mathrm{~m}$ mass of the sun $=2.0 \times 10^{30} \mathrm{~kg}$ radius of the sun $=6.955 \times 10^{8} \mathrm{~m}$

Unit I) Introductory Unit (Chapter 1)

Unit II) Motion in One Dimension (Chapter 2)

$$
*_{v}=\Delta \mathbf{x} / \Delta t \quad a=\frac{\mathbf{v}_{t}-\mathbf{v}_{i}}{\Delta t}
$$

Unit III) Vectors (Chapter 3, $1^{\text {st }}$ half)

$$
a^{2}+b^{2}=c^{2}
$$

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Unit IV) Projectile Motion (Chapter 3, $2^{\text {nd }}$ half)

$$
v_{x}=\Delta x / \Delta t \quad a_{y}=\frac{v_{f y}-v_{i y}}{\Delta t} \quad \Delta y=v_{i y} \Delta t+1 / 2 a_{Y} \Delta t^{2} \quad \vec{v}^{2}=v_{x}^{2}+v_{i y}^{2}
$$

Unit V) Newton's Laws and Forces (Chapter 4)

$$
F=m a \quad F=m\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}+a\right) \quad \# \text { of } g ' s=\left|\frac{\text { total force }}{m \times g}\right| \text { or } \left\lvert\, \frac{\text { total force }}{w}\right.
$$

acceleration due to gravity on the $\mathbf{m o o n}=\mathbf{- 1 . 6 3} \mathbf{~ m} / \mathrm{s}^{2}$
Unit VI) Work and Energy (Chapter 5)
$\mathbf{W}=\mathbf{F} \mathbf{d} \quad \mathbf{P}=\frac{\mathbf{W}}{\Delta \mathbf{t}}$
$1 \mathrm{hp}=746$ watts
$P=\frac{F d}{\Delta t}$
$\mathbf{P E}=\mathbf{m g h}$
$K E=1 / 2 \mathbf{m v}^{2}$

$$
\begin{gathered}
\mathbf{P E}_{i}+\mathbf{K E}_{\mathbf{i}}=\mathbf{P E}_{\mathrm{f}}+\mathbf{K E}_{\mathrm{f}} \\
\mathbf{m g h}_{\mathrm{i}}+1 / 2 \mathbf{m v}_{\mathrm{i}}^{2}=\mathbf{m g h}_{\mathrm{f}}+1 / 2 \mathbf{m v}_{\mathrm{f}}^{2}
\end{gathered}
$$

Unit VII) Momentum and Collisions (Chapter 6)

$$
\mathbf{p}=\mathbf{m v}
$$

$\mathbf{I}=\mathbf{F} \Delta t$
$F \Delta t=m \Delta v$

explosions: $\mathrm{m}_{1} \mathbf{v}_{\mathbf{1}}=\mathrm{m}_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}$
elastic collisions:
$m_{1} \mathbf{v}_{1 i}+m_{2} \mathbf{v}_{2 \mathrm{i}}=\mathrm{m}_{1} \mathbf{v}_{\mathbf{1 f}}+\mathrm{m}_{2} \mathbf{v}_{\mathbf{2 f}}$
inelastic collisions: $\quad m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f}$

Unit VIII) Periodic Motion and Gravity (part of Chapter 7, pendulums in Chapter 12))

$$
\begin{array}{lll}
\mathbf{v}=2 \pi r / T & a_{c}=v^{2} / r & F_{c}=m a_{c} \\
F_{g}=m g & F_{g}=\frac{\mathbf{G m}_{1}}{\mathbf{r}^{2}} \underline{m}_{2}, G=6.67 \times 10^{-11} \frac{\mathbf{N m}^{2}}{\mathbf{k g}^{2}} & T^{2}=\frac{4 \pi^{2} L}{g} \\
\mathbf{g}=\frac{\mathbf{G m}}{\mathbf{r}^{2}} & g=\frac{\mathbf{v}^{2}}{r} &
\end{array}
$$

Unit IX) Waves and Sound (Chapter 12 and Chapter 13)
$v=\underline{\Delta x} \Delta t \quad v=f \lambda \quad v=330 \mathrm{~m} / \mathrm{s}+\mathbf{0 . 6} \cdot\left({ }^{0} \mathrm{C}\right) \quad f^{\prime}=\frac{f(v)}{\left(\mathrm{v} \pm \mathbf{v}_{\mathrm{s}}\right)} \quad \mathrm{T}=\underline{\mathbf{1}}$
${ }^{0} \mathbf{C}=\frac{{ }^{0} \mathbf{F}-32^{\circ} \mathbf{F}}{1.8} \quad \mathbf{f}_{\mathrm{n}}=\mathbf{n} \underset{\mathbf{n} \mathbf{v}}{\mathbf{v}}, \mathbf{n}=\mathbf{1 , 2 , 3}, \ldots \quad \mathbf{f}_{\mathrm{n}}=\mathbf{n} \underset{\frac{\mathbf{4}}{\mathbf{4}}, \mathbf{n}}{ }=\mathbf{1 , 3 , 5}, \ldots$

$$
\begin{array}{rrr}
1 \mathrm{kHz}=10^{3} \mathrm{~Hz} & 1 \mathrm{MHz}=10^{6} \mathrm{~Hz} & 1 \mathrm{~nm}=10^{-9} \mathrm{~m} \\
\mathbf{C}=\text { speed of light }=\mathbf{3 . 0} \times \mathbf{1 0}^{\mathbf{8}} \mathbf{~ m} / \mathbf{s} &
\end{array}
$$

Unit \mathbf{X} Mirrors and Lenses (Chapter 14 and Chapter 15)

Unit XI) Current Electricity (Chapter 19 and Chapter 20)

$$
\begin{aligned}
& \begin{array}{l}
\text { current cost of electricity this year }=\underline{\$.101} \text { per } \mathrm{kWh} \\
\text { voltage across outlets in your home }=\underline{120 \mathrm{~V}}
\end{array} \\
& \Delta \mathrm{~V}=\mathrm{I} R
\end{aligned} \quad \mathrm{P}=\underline{\underline{\mathrm{W}}} \quad \mathrm{P}=\mathrm{I} \Delta \mathrm{~V}
$$

$$
1 \mathrm{~kW}=1000 \mathrm{~W}
$$

Unit XII) Special Relativity (not in your book)

And finally, some applications of Units I-XII

$$
\mathbf{t}=\frac{\mathbf{t}_{0}}{\sqrt{1-\frac{v_{2}^{2}}{\mathbf{c}^{2}}}}
$$

$L=L_{0} \sqrt{\frac{1-v^{2}}{c^{2}}} \quad m=\frac{\mathbf{m}_{0}}{\sqrt{1-\frac{v^{2}}{\mathbf{c}^{2}}}}$
$\mathrm{E}=\mathrm{mc}^{2}$

Band color	Digit	Multiplier	Tolerane
Black	0	1	
Brown	1	10	
Red	2	100	
Orange	3	1,000	
Yellow	4	10,000	
Green	5	100,000	
Blue	6	1,000,000	
Violet	7	10,000,000	
Gray	8	100,000,000	
White	9	1000,000,000	
Gold		0.1	$\pm 5 \%$
Silver		0.001	$\pm \mathbf{1 0 \%}$
Resistor Decoding			

$$
\begin{aligned}
& \mathbf{C}=2 \mathrm{f} \\
& \underset{f}{\mathbf{f}}=\frac{1}{p}+\frac{1}{q} \\
& \mathbf{m}=\underset{\mathbf{h}_{\mathbf{i}}}{\underline{\mathbf{h}_{\mathbf{i}}}} \\
& m=\frac{-q}{\mathbf{p}} \\
& \underset{h_{0}}{\mathbf{h}_{i}}=\frac{-\boldsymbol{q}}{\mathbf{p}} \\
& 1 \mathrm{~nm}=10^{-9} \mathrm{~m} \\
& \text { C }=\text { speed of light }=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

